

ANKLIWA-DS

WP3

Forest growth modelling, economic evaluation adaptive forest management under climate change

14.05.2024, Goc Final Meeting

Dr. Dominik Sperlich

Chair of Forest Economics and Forest Planning Tennenbacher Str. 4 (2. OG) 02010a 79106 Freiburg i.Br. (Germany) Email: dominik.sperlich@ife.uni-freiburg.de

Gefördert durch

Prejekträger Bundesanstalt für Landwirtschaft und Ernähnung

aufgrund eines Beschlusses des Deutschen Bundestages

universität freiburg

Development and implementa of adaptation strategies to climate change in forest management

Razvoj i primena strategija prilagođavanja klimatskim promenama u gazdovanju šumama

ANKLIWA-DS

With help of ...

Danyal Altunay (Economic Model)

Hanna Blauth (LAI measurements for model parametrization)

PE Vojvodina šume and Serbiašume for data (inventory, price lists etc)

... and of course the entire project team!

Gefördert durch:

Prejekträger Bundesanstalt för Landwitschaft und Ernährung

aufgrund eines Beschlusses des Deutschen Bundestages

universitätfreiburg

Development and implementat of adaptation strategies to climate change in forest management

Razvoj i primena strategija prilagođavanja klimatskim promenama u gazdovanju šumama

Oak

What are we doing the simulations for?

What is the impact of future climate change on forest growth and productivity?

→ The ONE climate change does not exist! Many pathways, many scenarios, lot of uncertainty. We don't know!

How are oak forests affected by declining groundwater levels?

→ Water availability for oak productivity in Ravni Srem is strongly dependent on river and groundwater levels – how will CC impact water availability and growth? We don't know!

What are economic risks of CC and adaptation?

→ Future price and cost uncertainty! What will be the demand, future wood use, work etc. in the future? We don't know!

How can forest management be adapted to unknown future climate and economy?

→ Management decisions depend on consciousness, objectives and change with time. Future Plan? Best Plan? We don't know! Many different forest development stages - young stands in focus, still easily steerable.

Lots of "Don't knows" so far! Reflects the uncertainty of future possible states of the world.

Scientists don't know the future better! We just do better and more structured guessing.

Essentially, we ask what-if questions and play through scenarios with sophisticated models.

Model results are not the reality! They are simply projections of possible states of the world based on our limited knowledge and assumptions.

In the best case, results can be used as guidance and provide action corridors

How to tackle "don't knows" and uncertainty?

 i) Employing a detailed forest growth simulator GOTILWA+ &
ii) develop and couple it with an economic model &
iii) experiment with several management options

Climate module

Here comes the structured guess work

Management

- Business-as-usual (BAU)
- Adjusted silvicultural guidlines moderate (MID)
- Adjusted silvicultural guidlines Intense (INTENSE)
 - No management (NoMG)

Climate scenarios No climate change (NoCC), RCP4.5 and RCP8.5

• 6 climate models each

 \odot

- CO_2 fertilization effect (e CO_2)
 - eCO_2 on and off

Declining groundwater tables

• Phreatic water uptake (PWU): 0%, 5%, 10%, 15%

18

with GOTILWA+

Application of process-based forest growth model GOTILWA+

Economic

Beautiful Serbian Oak forests

LMA and LAI measurements

Simulation Setup: Management

Harvesting volumes in m3 per ha & decade

Age class	BAU	NEW
0-10		0
10-20		10-15
20-30	10-15	65
30-40	30	80
40-50	35	80
50-60	40-50	80
60-70	40-50	80
70-80	40-50	80
80-90	40-50	60
90-100	40-50	60
100-110	40-50	60
110-120	40-50	60
120-130	40-50	Final harvest
130-140	40-50	Final harvest
140-150	40-50	
150-160	Final harvest	
sum	482	720

BAU

• Current management plans according realized yields (inventory data)

NEW

- newly developed management schedule in ANKLIWA-DS
- First draft based on Forest Developement Types of Baden-Würrtemberg
 - Adapted in ANKLIWA-DS & with new management guidelines

In essence ...

- apply higher thinning intensities
- focus on fewer future crops trees
 - beginn earlier with thinnings
- ightarrow Harvesting schedules were re-calculated for GOTILWA+

Management in GOTILWA+

Harvesting schedule in % of standing timber volume as applied in GOTILWA+

SimYear	Stand age	BAU	Adaptation	Adaptation	NoMG
2020	20	40	47	54	
2030	30	20	38	54	-
2040	40	18	30	43	-
2050	50	14	27	39	-
2060	60	12	24	35	-
2070	70	10	20	28	-
2080	80	9	15	21	-
2090	90	10	13	19	-
2100	100	-	-	-	-

- Stand development starting with young stands at stand age 20-30 (easily steerable)
 - End at stand age 100 representing simulation year 2100
 - MID Represents newly developed management guidelines
- INTENSE and NoMG represent extreme scenarios for covering wide variety for risk analyses and robust decision making

- Management BAU (without climate change)
- **13 plots** (different soil profiles from WP2)
 - Plots 6-10 mean MAI₁₀₀ 8.7 (WP4), dominant height 28-30
 - Calibrated with PWU 15 %

• One representative site type generated

Kazimirovic et al (2024) Annals of Forest Science

Calibration Oak (Srem)

- Management BAU (without climate change)
- **13 plots** (different soil profiles from WP2)
 - Plots 6-10 mean MAI₁₀₀ 8.7 (WP4), dominant height 28-30
 - Calibrated with **PWU 15 %**
 - One representative site type generated

Management in GOTILWA+

Results **Productivity**

Total Accumulated Growth In 2100 at stand age 100

NoCC

Management

No Management (NoMG) Business-as-usual (BAU) Moderate Adaptation (MID) Intense Adaptation (INTENSE) Total Accumulated Growth In 2100 at stand age 100

adaptation scenario MID generated highest TAG BAU close to NoMG

• Very high harvesting level in INTENSE → reduces TAG
• Similar pattern under climate change but with increased productivity (vegetation lenght, CO₂, temperature)
• Productivity gains especially at the beginning of simulation period until a certain tipping point

Results Mortality

Unplanned harvest (mortality)

accumulated in 2100 at stand age 100

NoCC

Management

No Management (NoMG) Business-as-usual (BAU) Moderate Adaptation (MID) Intense Adaptation (INTENSE)

 Climate change increased drought induced mortality (other agents not build up in simulator)

 despite increased productivity

Productivity is not a good indicator for vulnerability

Results Future crop trees

DBH of 50 strongest trees (DBH-50) In 2100 at stand age 100

NoCC

Management

No Management (NoMG) Business-as-usual (BAU) Moderate Adaptation (MID) Intense Adaptation (INTENSE)

 Earlier and more intense thinnings increased notably the DBH of 50 strongest trees

 DBH-50 is good indicator for future crop trees and economic value

 Extreme scenario INTENSE generated highest DBH-50 but in MID very similar without "over-exploiting" the forest
Downside risk under CC increases

Results Economic performance

Annuities (i =3 %) 2020-2100

NoCC

Management

No Management (NoMG) Business-as-usual (BAU) Moderate Adaptation (MID) Intense Adaptation (INTENSE)

Annuities (i =3 %) 2020-2100

• Adaptation of BAU increases notably economic performance

• Annuities highest in INTENSE, but MID shows higher positive standard deviation

 \rightarrow highest potential for benefits

• CC seems to increase annuities

- Strongly dependant on assumptions! Constant (historic) prices, costs and interest rates which are all highly variable
- What happens if low prices meet high mortality meets higher interest rates?

• Economic uncertainties and risks not build up!

Results Drought risks

Declining groundwater levels

Unplanned harvest (mortality)

Drought risk increases

Phreatic Water Uptake (PWU)

(% of transpired water)

Declining groundwater levels

 Model calibration with PWU 15 % – lowering PWU increases mortality and strongly reduces productivity, DBH-50 and profitability

 High uncertainty regarding future – however, very high downside risks! Productivity not the main variable
Mortality likely underestimated (only drought-induced)

• What about economic risk factors?

Economic model including uncertainties of

Roundwood prices

• 51

Harvesting costs

I1

Capital costs

• 3 levels DDR

• 3 levels CDR

= 3366 combinations

X

432 GOTILWA+ simulations

= 1,454,122 combinations of what could

happen in the future

Variability of the annuity with uncertainties

All BAU ASG NOM

Slide curtesy Danyal Altunay

Distribution of the annuity (€/ha) Value at risk (VaR)

40

Robust metric of risk analyses

 \odot Upside risk is not a risk but a chance \rightarrow no need to prepare for that

 Downside risk is critical: measure for projected losses when return is lower than indicated threshold

 \rightarrow includes our worst nightmares! Get ready for that

 Distribution of annuities of all combinations (states of the world) show an improvement through the adaptation

 INTENSE enhances robustness by ca 30-60% despite reduced productivity (on average ca. 15%) Results Productivity With climate change Tara - limestone

N= 13 simulations 13 plots available for TARA with soil profile data and productivity data (Marko) Fig. shows mean with ribbons (confidence interval)

Harvesting volume (m3/ha) in GOTILWA+ Absolute values

Age classes	BAU	Intense (new)
0-10	0	0
10-20	0	0
20-30	0	15
30-40	40	103
40-50	76	128
50-60	78	111
60-70	73	112
70-80	72	86
80-90	70	72
90-100	57	68
100-110	207	148
>120	163	150

Simulation Results: Total accumulated growth BAU → NEW Stand age

Simulation Results: Total accumulated growth BAU → NEW Stand age

Simulation Results: Dead Wood Volume BAU → NEW Stand age

		20		40	60	80	100	120	140
	120	Clin	nate scenario	s (MG: INTENSE)					
	100 [.]		RCP45_GCM-ICH RCP45_GCM-ICH RCP45_GCM-ICH RCP45_GCM-MP	EC_CLMcom-CCLM4-8-17 EC_DMI-HIRHAM5 EC_KNMI-RACMO22E _CLMcom-CCLM4-8-17					
ha_	80 [.]		RCP45_GCM-MP RCP45_GCM-MP RCP85_GCM-ICH	_MPI-CSC-REMO20091 _CSC-REMO20092 EC_CLMcom-CCLM4-8-17	Higher prever	r harvesting vol nt mortality driv	umes /en		
(m ³	60		RCP85_GCM-ICH RCP85_GCM-ICH	EC_DMI-HIRHAM5 EC_KNMI-RACMO22E	salvag	e cuttings			
M	40	· · · · · ·	RCP85_GCM-MP RCP85_GCM-MP	_OEMICONI-CCELM4-8-17 _MPI-CSC-REMO20091 _CSC-REMO20092					
-	20								
	0	- - - -	18-8-8-8-8-8-8-8-8		•				
		198	30	2000	2020	2040	2060	2080	2100
					S	imulation	year		

Simulation Results: DBH BAU \rightarrow NEW

Study area Tara

Conclusion Climate change simulations

Mortality risks increased notably, especially on shallow soils (not shown)

→ Highly variable between scenarios (CC uncertainty), but mostly negative

consequences.

Mean DBH notably higher in NEW

→ Target diameter can be reached in shorter time

Questions

۲

VaR and CVaR depending on confidence level Substantially higher robustness of the ASG

■BAU ■ASG ■NOM

Robustness metrics Value at Risk (VaR) and Conditonal Value at Risk (CVaR)

Simulation Setup: Management

MARCH MARKED

- Problem under CC: major mortality events or productivity losses make absolute and static harvesting values unrealistic in the simulator → need for a dynamic management approach under climate change for GOTILWA+
- Absolute harvesting volumes from BAU and NEW under current climate (no climate change) (1) are translated into relative values of standing volume (% of increment not possible in GOTIWLA+) (2) and applied in climate scenarios

osolute Harv (m3 /10 yrs./	esting ′ha)

Absolute haivesting					
(m3 /10 yrs./ ha)					
Age					
class	BAU	NEW			
20-30	0	14			
30-40	40	103			
40-50	76	126			
50-60	76	112			
60-70	71	88			
70-80	71	88			
80-90	68	71			
90-100	59	63			
100-110	268	139			
120-130	268	139			
130-140	268	139			

Relative Harvesting				
(% of	Standing \	/olume)		
Age				
class	BAU	NEW		
20-30	0	5		
30-40	10	32		
40-50	15	34		
50-60	15	28		
60-70	13	28		
70-80	12	19		
80-90	12	15		
90-100	9	12		
100-110	43	43		
120-130	43	43		
130-140	43	43		

Sec. Mary

Age classes	BAU absolute	BAU Relative	NEW absolute	NEW relative
0-10	0	0	0	0
10-20	0	0	0	0
20-30	0	0	15	5
30-40	40	10	103	32
40-50	76	15	128	34
50-60	78	15	111	28
60-70	73	13	112	28
70-80	72	12	86	19
80-90	70	12	72	15
90-100	57	9	68	12
100-110	207	43	148	43
>120	163	43	150	43

Simulation Results: Standing Volume BAU → NEW Stand age

Simulation year

Simulation Results: Harvested volume BAU → NEW Stand age

Simulation Results: Leaf Area Index BAU → NEW Stand age

